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Abstract
Variational autoencoders (VAEs) are susceptible
to adversarial attacks. An adversary can find a
small perturbation in the input sample to change
its latent encoding non-smoothly, thereby com-
promising the reconstruction. A known reason for
such vulnerability is the latent space distortions
arising from a mismatch between approximated
latent posterior and a prior distribution. Conse-
quently, a slight change in the inputs leads to a
significant change in the latent space encodings.
This paper demonstrates that the sensitivity at
any given input exploits the directional bias of
a stochastic pullback metric tensor induced by
the encoder network. The pullback metric tensor
captures how the infinitesimal volume changes
from the input space to the latent space. Thus, it
can be viewed as a lens to analyse the effect of
small changes in the input leading to distortions
in the latent space. We propose robustness evalua-
tion scores using the eigenspectrum of a pullback
metric. Moreover, we empirically show that the
scores correlate with the robustness parameter β
of the β−VAE.

1. Introduction
Variational autoencoders (VAEs) (Kingma and Welling,
2013) are deep generative models with an encoder-decoder
network. The encoder parameterises the variational distribu-
tion over latent variables conditioned on data samples, and
the decoder estimates the data distribution through the latent
distribution. Thus, VAEs serve a dual purpose of estimating
data density and providing a rich representation space with
uncertainty quantification. Recently several works have
shown application of VAEs to high fidelity image genera-
tion (Vahdat and Kautz, 2020), music generation (Roberts
et al., 2017), video generation (Wu et al., 2021), and many
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more. However, like other machine learning models, VAEs
are also vulnerable to adversarial attacks, as demonstrated in
several recent works (Tabacof et al., 2016; Gondim-Ribeiro
et al., 2018; Willetts et al., 2019; Kos et al., 2018; Kuzina
et al., 2021). In a typical setup, an adversary can attack a
VAE by learning the small perturbation resulting in a signif-
icant change in latent encoding. This mechanism takes the
form of an optimisation problem which is generally solved
using stochastic gradient methods (Chakraborty et al., 2018;
Szegedy et al., 2013). (Sun et al., 2021) provide a compre-
hensive overview of different types of attacks on VAEs as
well as other generative models.

The primary reason for the vulnerability of VAEs is the
distortion in the latent space resulting due to the mismatch
between approximated posterior and latent space prior, also
known as the KL gap. Hence, the latent space is non-smooth,
and the representations of similar inputs tend to be sig-
nificantly distant in the space under the Euclidean metric.
Methods such as (Mathieu et al., 2019; Willetts et al., 2019)
have emphasised the importance of reducing the KL gap
for learning disentangled latent space that also improves the
robustness of VAEs. β− VAE (Higgins et al., 2016) formu-
lation introduces a parameter β to directly control the gap.
Other methods (Chen et al., 2018b; Kim and Mnih, 2018;
Esmaeili et al., 2019) utilise the total correlation term to dis-
entangle the latent coordinates of VAEs that also smooths
the latent space proving helpful in improving the robust-
ness. The limitation with these approaches is that they cause
over smoothing of the reconstructed samples and require
a careful training mechanism to balance the regularisation
term. To address the problem (Willetts et al., 2019) utilise
the TC term in hierarchical VAEs that provides robustness
along with sharp reconstruction. However, most robustness
methods use regularisation terms, which do not provide
meaningful insights for quantifying robustness. Therefore,
a notion of small change in the input to the large change
in latent space is not well established. Moreover, the com-
parison of these schemes relies on the visual inspection of
distorted images at a different magnitude of adversarial loss.

Much recently (Camuto et al., 2021) proposed a theoretical
framework that takes into account the uncertainty of encoder
for studying the robustness of VAEs. However, the attacks
in the input space do not consider the effect of geometry.
Another recent work (Kuzina et al., 2021) proposed asym-
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metric KL term to capture the difference between the latent
representation of input and its perturbation. They obtain
the ε using the Jacobian of the mean latent code evaluated
at the input perturbation. Nevertheless, their optimisation
objective does not provide any geometrical insights. Like-
wise, they do not consider the standard deviation term when
computing Jacobian. Thus, do not account for the uncer-
tainty in the representation space. Our paper shows that
the geometry induced by the stochastic encoder mapping
provides the intuition behind the sensitivity of VAEs that
can be a valuable tool for understanding robustness.

The central theme of our paper is to view the adversarial at-
tack problem through the lens of manifold geometry. Unlike
existing approaches treating the input space as euclidean,
we propose to utilise the stochastic pullback-metric tensor
induced by the encoder map to measure the distance in the
image space. We demonstrate that the distortion in the latent
space results in a directional bias appearing in the form of
an anisotropic metric tensor. We show that an adversary
can design a one-step attack by moving along the dominant
eigendirection of the local metric tensor. To quantify ro-
bustness, we propose scores based on the eigenspectrum of
the local metric tensor. We hypothesise that defence meth-
ods would influence the local geometry of the metric tensor.
We use β−VAE and demonstrate that the proposed scores
correlate with the β parameter of β−VAE used to control
robustness. To our knowledge, such a geometric view of the
robustness of VAEs has not been previously investigated.

2. Background
2.1. β−Variational Autoencoder

β−VAE (Higgins et al., 2016) is a probabilistic encoder-
decoder framework that simultaneously parameterises the
latent distribution and emission distribution using deep neu-
ral networks. Consider a sample x ∈ X = RN drawn
from unknown data distribution p(x), VAE learns an approx-
imate posterior distribution qθ(z|x) over latent variables
z ∈ Z = Rdz using a stochastic encoder network, and an
emission distribution pφ(x|z) using a stochastic decoder
network. The parameters θ of encoder network and φ of a
decoder network are obtained by maximising the evidence
lower bound (ELBO),

Ez∼q(z|x)[log pθ(x|z)]− βKL[qφ(z|x)||p(z)] (1)
where KL stands for Kullback-Leibler divergence (Kull-
back and Leibler, 1951), and a parameter β controls the
smoothness of latent distribution, setting β = 1 is equiva-
lent to a standard VAE (Kingma and Welling, 2013).

2.2. Adversarial Attacks on VAE

The adversarial attacks on VAEs assume access to a pre-
trained encoder-decoder network. The adversary aims to

exploit the capacity of VAE by finding small perturbations
in the input sample that lead to a large change in its latent
encoding or its reconstruction. In a supervised scenario, the
adversary starts with the target image and finds a minimal
change that can match the reconstruction to the target. In
an unsupervised, the aim is to simply maximise the dis-
tance in latent codes, which in turn will compromise the
reconstruction. Several recent developments have proposed
mechanisms for designing an adversary as well as evaluating
the robustness of existing deep generative models (Tabacof
et al., 2016; Willetts et al., 2019). In our paper, we propose a
geometrical viewpoint of unsupervised attack by analysing
the metric tensor induced by the stochastic encoder net-
work. We first introduce the unsupervised variational attack
problem and later in Section 3 present our approach.

Consider, an encoder network fθ : X→ Z the unsupervised
attack optimises the objective (Gondim-Ribeiro et al., 2018),

max
η

d(fθ(x), fθ(x+ η))

subject to ||η||2 = η0 (2)

where η0 is a small constant that decides the severity of the
attack, and d(., .) is a distance function that measures the
proximity in the latent space. A common approach of find-
ing a corruption η is to use stochastic gradient methods (Sun
et al., 2021; Willetts et al., 2019).

2.3. Latent Space Geometry

In this section, we introduce definitions from Riemannian
geometry relevant for our work and then discuss related
work on latent space geometry.

Definition 2.1. A n−dimensional manifoldM is a topo-
logical space where for every x ∈M there exist a neighbor-
hood region Vx homeomorphic toRn (Lee, 2006).

Definition 2.2. A Riemannian metric for a smooth man-
ifold M is a bilinear, symmetric, positive definite map
Gx : TxM × TxM → R for all x ∈ M, where TxM
is a tangent plane at point x on the manifold (Lee, 2006).

Definition 2.3. A smooth manifoldM with a Riemannian
metric G defined on every point of a manifold is called a
Riemannian Manifold (Lee, 2006).

Definition 2.4. Given a mapping f :M→N from smooth
manifoldM to N , for any x ∈M the pull-back metric Gx

induced by the mapping f is given as Gx = JTf(x)Gf(x)Jf(x),

where Jf(x) =
∂f(x)
∂x .

Several recent works treat the decoder mapping of VAEs
as a smooth immersion and use the pullback as an induced
metric in the latent space. The computation of such metrics
has been useful in various applications such as drawing
on manifold samples, latent space interpolation, clustering,
motion planning and many more (Arvanitidis et al., 2017;
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MNIST: (a) Original ↓ Reconstruction (b) Corrupted δ1 ↓ Reconstruction (c) Corrupted δ2 ↓ Reconstruction

FMNIST: (d) Original ↓ Reconstruction (e) Corrupted δ1 ↓ Reconstruction (f) Corrupted δ2 ↓ Reconstruction

Figure 1. Illustration of adversarial attack along the dominant eigenvector of a stochastic pullback metric tensor. The first two rows are
results on MNIST data and the bottom two on FashionMNIST dataset. We evaluate the reconstruction for original images and its two
corrputed version with different step sizes δ1 = 0.5233 and δ2 = 0.7443. We observe moving along eigendirection doesn’t effect the
input image but significantly changes its reconstruction.

Yang et al., 2018; Hauberg, 2018; Chen et al., 2018a; Shao
et al., 2018; Arvanitidis et al., 2020; Beik-Mohammadi et al.,
2022). The computation of a pull-back in (Chen et al.,
2018a; Yang et al., 2018) does not take into account the
contribution of the uncertainty in the decoder mapping and
are therefore limited in their ability to capture topological
properties of manifold. (Arvanitidis et al., 2017; Hauberg,
2018) proposed to consider uncertainty of the decoder by
treating the Gaussian decoder as a random projection of
a deterministic manifold. This allows them to treat the
reconstruction space as a random manifold and treat the

pullback metric tensors as stochastic which proves useful in
handling topological holes and low-density regions.

In our paper, we establish the connection between the di-
rectional bias of the stochastic pullback metric tensor of an
encoder and the adversarial robustness of β−VAE. Previ-
ously (Zhao et al., 2019; Sun et al., 2020; Martin and Elster,
2020) studied the spectrum of Fisher information (pullback
from probability simplex to the input space) of a classifier
to investigate the robustness to adversarial perturbations.
However, there is no such study for generative models to
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our knowledge. Also, the metric tensor considered in our
paper considers the effect of uncertainty in the latent space,
which is vital for understanding the latent distortions.

3. Method
We consider the encoder fθ mapping samples from the data
manifold to the latent manifold as a smooth immersion.
We then utilise the pullback metric tensor induced by fθ
to connect the infinitesimal volume element around an in-
put sample on data manifold with the infinitesimal volume
around its representation on the latent space. Figure 2 shows
an example of change in volume element under f . Unlike
the existing methods relying on euclidean distance in the in-
put space, we can use the pullback metric tensor to measure
the infinitesimal distance given by a local inner product. We

Figure 2. Illustration of the change in local geometry under a map-
ping f from the data manifoldM to the latent manifold N , the
pullback metric tensor provides a connection between infinitesimal
volume on the latent manifold and a input manifold.

first express the adversarial optimisation problem in terms
of the pullback metric tensor. Next, we show that due to the
anisotropic nature of the metric tensor, the adversary can
exploit the directional bias to design attacks. Finally, we
propose an evaluation criterion based on the eigenspectrum
of the metric tensor to evaluate the robustness of VAEs.
Infinitesimal distance Since perturbation η is small in
norm, we can approximate the distance d(., .) in Equation 5
as an infinitesimal distance along the latent manifold using
the Taylor expansion of squared distance,

d(fθ(x), fθ(x+ η)) = ||(fθ(x)− fθ(x+ η)||22 = ηTGxη,

Gx = JTfθ(x)Jfθ(x), Jfθ(x) =
∂fθ
∂x

(3)

where Jfθ(x) ∈ Rdz×N is a Jacobian matrix, dz is the di-
mensionality of Z and N is the dimensionality of X. The
matrix Gx is a symmetric, positive definite matrix known
as a pullback metric tensor under the mapping fθ. We can
use it to measure local inner product for every x in the input
space x ∈ X.
Stochastic pull-back metric tensor The encoder is a
stochastic map given by the combination of µθ(x) and σθ(x)
as fθ(x) = µθ(x) + ε� σθ(x), where ε ∼ N (0, Id). As a
result, the Jacobian of fθ is also a combination of the two
maps Jf = Jµ(x) + ε� Jσ(x) and the final pullback matrix

Gx is given by,

Gx = (Jµ(x) + ε� Jσ(x))
T (Jµ(x) + ε� Jσ(x))

= JTµ(x)Jµ(x) + JTµ(x)εJµ(x) + JTσ(x)εJµ(x) + JTσ(x)ε
2Jσ(x)

We can view the latent space as a random projection of a
deterministic manifold. Under the assumption the sample
paths from fθ are smooth we can treat the metric tensor as a
stochastic matrix. The metric of the random latent manifold
can be estimated in expectation as Ĝx = Eε∼p(ε)[Gx]. Since,
ε is a zero mean and unit covariance the E[ε] = 0 and
E[ε2] = 1 the final expected metric tensor is,

Ĝx = JTµ(x)Jµ(x) + JTσ(x)Jσ(x) (4)

Adversarial attack under expected local geometry We
now use the expected metric tensor to reformulate the adver-
sarial attack optimisation in Equation 5 as,

max
η

ηT Ĝxη (5)

subject to ||η||2 = η0 (6)

To solve the problem we combine the constraints by intro-
ducing Lagrange multiplier λ,

max
η

ηT Ĝxη + λ(η0 − ||η||22) (7)

The closed form solution of the above optimisation takes
the form Ĝxη = λη, where a pair (λ,η) represents the
eigenvalue and eigenvector of the stochastic pullback metric
tensor, the eigenvector with the largest eigenvalue corre-
sponds to the direction of maximal change. Thus, for a
given input x an adversary can exploit this directional bias
to find perturbations that maximally change the encoding of
the input sample as xc = x+ δλη, where δ is a magnitude
of the step along the eigendirection. This way adversary can
devise a one-shot attack by choosing step size δ based on
the distance between reconstruction of original input and its
corrupted version as ||x̂− x̂c||.

We next, present the two evaluation scores and study their
effect for different values of β.
Robustness evaluation A robustness method should sup-
press the maximum eigenvalue of the pullback metric tensor.
Moreover, it should eliminate the directional bias resulting
from the anisotropic distribution of eigenvalues of a pull-
back metric tensor. To quantify these two effects, we report
the following two scores,
Spectral Radius for a matrix G is defined as,

ρ(G) = max{|λ|,λ is an eigenvalue of G} (8)

A robust model will have a low value of spectral radius.
Von Neumann Entropy (Bengtsson et al., 2008) S of a metric
tensor G is given by the Shannon entropy of its eigenvalues
S = −

∑
k λk logλk. The high value would imply the

eigendirections are anisotrpic resulting in a directional bias.
Thus, a robust model will have a low value of S.
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(a) Robustness evaluation of β−VAE on MNIST.

(b) Robustness evaluation of β−VAE on FashionMNIST.

Figure 3. Figure (a), on left, we report the histogram of spectral radius and Von Neumann entropy (on test samples) for different values
of β in β-VAE. On right, we report the average of two scores across test samples for increasing value of β. We observe, increasing the
value of β suppresses the maximum eigenvalue of metric tensor, and the distribution of eigenspectrum gets more isotropic. In second row,
we corrupt the test images along top five eigendirection (denoted by λ1, λ2, λ3, λ4, and λ5) with an increasing step size for different
values of β. The plots describe the average MSE across test samples. We observe for higher value of β the average step size increases.
Increasing the value of β reduces the KL gap which in turn minimises distortion in the latent space. Figure (b), demonstrates similar
observations on FashionMNIST dataset.

4. Experiments and Results
In our experiments, we first demonstrate the vulnerability of
a VAE along the dominant eigendirection of various input
samples. Next, we report the proposed scores and study their
relationship with the robustness parameter β in β−VAE. For
this purpose, we sample 50 values of β with a logarithmic
spacing between [0.01, 10]. We train the encoder-decoder
model for each parameter and evaluate the scores on test
data. We run experiments on MNIST (Deng, 2012) and
FashionMNIST (Xiao et al., 2017) datasets.

Implementation details We use the same encoder-decoder
architecture across all the experiments. The encoder net-
work is a four-layer MLP with 256, 256, 512 and 32 hidden
units. The latent space distribution is a multivariate Gaus-
sian with mean and standard deviation parameterised by
two 32 × 32 linear mappings. We use the standard zero
mean and unit covariance prior in latent space. The decoder
network is the inverse of an encoder with 32, 512, 256 and
256 hidden units. We use tanh as an activation function
and batch-normalisation (Ioffe and Szegedy, 2015) before
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all activations.

4.1. Adversarial Attack

Figure 1 demonstrates the two instances of corruption
along the dominant eigenvector of β = 1 VAE on MNIST
and FashionMNIST datasets. For each dataset, the three
columns in the first row are a set of original images and
their corrupted version with a step size of δ = 0.5223 and
δ = 0.7443. In a second row, we report their respective
reconstructions. We observe that with δ = 0.5223, the re-
construction significantly differs from the original images,
and for δ = 0.7443 gets much more severe, exposing the ca-
pacity of VAE. This result proves an attacker can exploit the
directional bias of metric tensor to design one-shot attack.

4.2. Adversarial Robustness

Here, we investigate the connection between our proposed
scores and the robustness of β−VAE. For this purpose, we
took a sample size of 4000 test images and computed two
scores ρ(Ĝ) and S for every sample point. Figure 3 first
and the second column of row on (MNIST) and three (Fash-
ionMNIST) reports the histogram of the scores for four
different values of β. We observe that the higher value of β
suppresses the spectral radius. Similarly, the von Neumann
entropy is decreased, demonstrating that the local directions
get isotropic. Importantly, this indicates the adversary can-
not exploit the directional bias for high values of β with η
small in the norm. In the third and fourth columns of rows
one and three, we report the mean and standard deviation
of the scores computed for fifty increasing values of β. The
results demonstrated that by reducing the KL gap, parame-
ter β prevents distortion in the latent space eliminating the
directional bias exploited by an adversary.

Next, we examine the connection between the step size δ and
the strength of attacks under different values of β. We report
the mean squared error (MSE) between an original image
and its reconstruction under varying corruption rates along
five dominant eigendirections. We generated 40 logarithmic
spacing step size in range [0.01, 10]. Figure 3 second row
(MNIST) and fourth row (FashionMNIST) demonstrate the
MSE vs step size averaged across all test samples for four
different values of β. We observe that for the small β, all
five directions tend to get high MSE, and as β increases, it
requires a larger step size to get a significant change in MSE.
This effect shows that the probabilistic encoder-decoder
model is more robust than its deterministic counterpart. The
stochastic metric tensor comprises two terms resulting from
the latent space’s variational distribution. For small values
of β, the encoder does not do well in quantifying the uncer-
tainty and fails to match the prior; as an outcome, the latent
space is more distorted, resulting in empty and low-density
regions given by dominating eigendirections of the metric

tensor. The distortions are reduced for a high value of β;
accordingly, the second term can account for the uncertainty
in latent space preventing the eigenvalues from getting large.

5. Conclusion and Future Scope
We have presented a geometrical perspective of adversarial
attacks and introduced scores for measuring the robustness
of β−VAE. We have shown that the sensitivity of the en-
coder at a given input can be interpreted using a stochastic
pullback metric tensor. The spectral radius, and Von Neu-
mann’s entropy of a metric tensor correlate to robustness
parameter β of β−VAE suggesting the scores are valuable
criterion for evaluating robustness. A caveat with β−VAE
is that increasing the β parameters tradesoff the capacity of
representations with the quality of reconstruction resulting
in mode collapse for large β. This further implies a tradeoff
between spectral radius and the robustness. Therefore, to
develop a good robustness scheme without compromising
the capacity of representation we want to restrict the spectral
radius within a specified range. Recently few mechanisms
have been proposed to reduce the distortion in latent space
and improve the robustness of VAEs (Willetts et al., 2019;
Kuzina et al., 2021). We hypothesise that the benefits of
such robustness measures can be better established geomet-
rically by investigating their pullback metric tensors. We
wish to investigate it in the future work.

In this paper, we consider that the local metric tensor in
latent space as Gz = I. However, the stochastic nature of
the decoder map results in a curved geometry in the latent
space (Arvanitidis et al., 2017). We can take this geometry
into account by computing Gz using the stochastic decoder
network and using it to express the metric in the input space
as, Gx = JTfθ(x)GzJfθ(x), where Gz = JTgω(z)Jgω(z) can be
computed with respect to stochastic decoder network gω.
Connecting the two pullback tensor will be useful for un-
derstanding how the changes in input space are propagated
to the reconstruction via latent space and might be a more
valuable score for evaluating the robustness to adversarial
perturbations. We are currently investigating these direc-
tions as a future extension.

A limitation of our current work is that we only consider
the unsupervised attack when a target sample is not known.
Furthermore, there can be different forms of attack by re-
placing l2−norm with more general p−norms. We wish to
study these in the future work.
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